
General announcements



2.)

Consider two masses moving in opposite directions that collide as shown 
below.  If one mass has a jet pack on its back that provides a constant force F 
(again, as shown), what do the impulse equations suggest for both masses?
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The Modified Conservation of 
Momentum Theory
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During the collision, the green fellow will 
feel an impulse to the right due to the jet and 
an impulse to the left due to the collision.  
Assuming the time of collision is     , the 
impulse relationship for the green mass 
through the collision becomes:

The blue fellow will NOT feel an impulse due to a jet as there is no jet attached to 
it, but it will feel an impulse to the right due to the collision.  It will be equal in 
magnitude and opposite in direction to the impulse the green fellow felt due to the 
collision.  The blue block’s impulse relationship through the collision will be:
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FjetΔt − FcollisionΔt = pA,2 − pA,1

FcollisionΔt = pB,2 − pB,1
Adding the two relationships, the collision impulses (whose forces are N.T.L. 
action/action pairs referred to as internal forces) will add to zero, so:

FjetΔt = pA,2 + pB,2( )− pA,1 + pB,1( )

Δt

before collision

after collision



Rearranging the terms so that the “before”
terms are on the left side of the equation and 
the “after” terms on the right, we end up with
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pA,1 + pB,1( ) + FjetΔt = pA,2 + pB,2( )
If we include the fact that all of this is happening 
in the x-direction, this can be re-written as:

This is called the modified conservation of momentum relationship.  It essentially 
maintains that in a particular direction, if all of the forces acting on a system over a 
time interval are internal to the system (i.e., Newton’s Third Law action/action 
pairs) with no impulses being generated by external forces (i.e., non-action/action 
pairs, like the jet pack), then the sum of the momenta (signs included) at the 
beginning of the interval will equal the sum of the momenta at the end of the 
interval.  That is, the individual momenta can change, but the sum must remain the 
same . . . unless there are external forces producing external impulses present to 
change the momentum content of the system.  

px,before∑ + Fexternal,xΔt∑ = px,after∑
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As a point of semantics: An isolated system is a system in which there 
are no external forces (hence no external impulses) acting.  With the modified 
conservation of momentum equation including the possibility of external impulses 
(or not), making the distinction between isolated and non-isolated systems is not so 
important, but you may run into the language so you need to know about it.  

Technically, collision always produce deformation and sound and heat, so 
energy is never really conserved through a collision.  There are close calls, though.  
When this happens, because potential energy changes are almost non-existent thru 
collisions, what is “conserved” is kinetic energy. 

1.) An inelastic collision is defined as a “normal” collision—momentum 
conserved thru the collision unless there is an especially large external impulse 
present—with energy NOT conserved.

2.) A perfectly inelastic collision is defined as an inelastic collision in which 
the bodies stick together after the collision (i.e., final velocities are the same).  

To delineate types of collision, three kinds are given special names:  
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3.) An elastic collision is defined as a collision in which both momentum and 
mechanical energy are assumed to be conserved.

Easy example: two electrons veering from one another due to electrical repulsion 
as they pass one another.  This interaction, this “collision,” is to a very good 
approximation conservative in energy.

Not so obvious examples: ideal, massless springs:
x

x = 0   (at equilibrium)

k

v
Example 1: A block jammed against an ideal 
spring is struck by another block moving in with 
velocity v.  Energy is NOT conserved in the 
collision due to deformation between the blocks.

Example 2: A block collides with an ideal, 
massless spring, pushing it in to the left.  Energy 
IS conserved in this case.  Why?  Because due to

k

v

the masslessness of the spring, no deformation occurs so no energy is lost.  
(This is not terribly appealing because it ignores energy loss to sound and heat, 
but that’s the assumption made.)



Momentum and systems practice
• A boy is standing at one end of a floating raft that is stationary relative to the shore. He 

walks to the opposite end of the raft, away from shore. What happens to the raft? 
Explain using momentum.

• If two objects collide and one is initially at rest, is it possible for both to be at rest after 
the collision? Is it possible for only one to be at rest after the collision? Explain.

• Your friend throws you a tennis ball at a certain velocity and you catch it. Then you have 
a choice: your friend can throw you a heavy medicine ball at the same velocity, same 
momentum, or same KE as the tennis ball. Which option would you choose to make the 
easiest catch, and why?

Raft moves the opposite direction. There was no momentum to begin with for either boy or 
raft – as boy moves one way (positive p), raft moves the other (same amount of negative 
p). Depending on mass of raft, it will move faster or slower than the boy’s walking pace.

No – there was momentum before the collision, so there must be the same net momentum 
after; if objects are stopped, momentum is 0 which violates the law. Yes, one can be at rest, if 
all the momentum from the first object transfers to the initially stationary one (let’s try it!).

Same momentum. With same v, momentum would be much greater for the medicine ball, 
which would be harder to stop (more impulse). With same KE, medicine ball’s velocity is 
smaller but its overall momentum is still greater so it will also take more impulse to stop.
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More questions…
• If you throw a ball in the air, is momentum conserved? During what part(s) of 

the motion? In what system(s)? 

• Why are bullets so small compared to the gun they’re shooting from? Put 
another way, why are cannons so heavy?

In the system of just the ball alone, momentum is never conserved in this motion: the 
hand, gravity, and air resistance all provide external impulses at various times. Once 
the ball leaves the hand (ignoring air resistance), momentum IS conserved in the ball-
Earth system: gravity becomes an internal force (because the ball is also causing the 
Earth to increase its upward momentum, even though we can’t sense it.

BIG M, tiny v. Tiny m, BIG v. The more momentum the projectile has forward when 
you shoot, the more recoil the gun/cannon will have backwards (to keep momentum 
conserved). Making the gun/cannon much much much heavier means its recoil 
velocity will be much less, allowing the smaller projectile to move forward at a greater 
relative velocity.

In movie form…
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Recoil in action…
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Example 2: Consider shooting a 4.25-
kg gun with an 80 cm long barrel that fires a 
50-gram bullet with velocity 400 m/s.  

What is the magnitude of the gun’s recoil velocity?

What is the impulse on the bullet? 

    px,before∑ + Fexternal,xΔt∑  =          px,after∑
          0( )    +         0( )        =    mgun   −vgun( )  +  mbullet      vbullet

            0     +          0         = − 4.25 kg( )vgun  + .05 kg( ) 400 m/s( )
                             ⇒        vgun = 4.7 m/s       

You can get this either by calculating         or      .  We’ll use      .         FΔt Δp Δp

 

J = mv2 − mv
  = .05 kg( ) 400 m/s( )− .05 kg( ) 0 m/s( )
  = 20 kg i m / s

So formally, as a vector, this would be:
 

!
J = 20 kg i m/s( ) î( )

before

after

vgun vbullet
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Con’t: Consider shooting a 4.25-kg gun
with an 80 cm long barrel that fires a 50-
gram bullet with velocity 400 m/s.  

What is the bullet’s time of flight?

What is the bullet’s acceleration? 

vavg =
d
t

   ⇒    t = d
vavg

   ⇒    t = .8 m
200 m/s

             = 4x10−3s       

Again, kinematics.         

before

after

vgun vbullet

This is a kinematics problem—irritating, but 
something you need to not forget how to do . . . 

a = v2 − v1

t
  = 400 m/s− 0

4x10−3s
  = 105 m/s2        
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Con’t: Consider shooting a 4.25-kg gun
with an 80 cm long barrel that fires a 50-
gram bullet with velocity 400 m/s.  

Determine the force on the bullet two different 
ways.

F = ma
  = .05 kg( ) 105  m/s2( )
  = 5x103N       

before

after

vgun vbullet

Using Newton’s Second Law:

Using the Impulse relationship:

FΔt = Δp

   ⇒    F = Δp
Δt

              =
.05 kg( ) 400 m/s( )− 0

4x10−3  s
              = 5x103N       
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